TRAIL-R2 promotes skeletal metastasis in a breast cancer xenograft mouse model

نویسندگان

  • Hendrik Fritsche
  • Thorsten Heilmann
  • Robert J. Tower
  • Charlotte Hauser
  • Anja von Au
  • Doaa El-Sheikh
  • Graeme M. Campbell
  • Göhkan Alp
  • Denis Schewe
  • Sebastian Hübner
  • Sanjay Tiwari
  • Daniel Kownatzki
  • Susann Boretius
  • Dieter Adam
  • Walter Jonat
  • Thomas Becker
  • Claus C. Glüer
  • Margot Zöller
  • Holger Kalthoff
  • Christian Schem
  • Anna Trauzold
چکیده

Despite improvements in detection, surgical approaches and systemic therapies, breast cancer remains typically incurable once distant metastases occur. High expression of TRAIL-R2 was found to be associated with poor prognostic parameters in breast cancer patients, suggesting an oncogenic function of this receptor. In the present study, we aimed to determine the impact of TRAIL-R2 on breast cancer metastasis. Using an osteotropic variant of MDA-MB-231 breast cancer cells, we examine the effects of TRAIL-R2 knockdown in vitro and in vivo. Strikingly, in addition to the reduced levels of the proliferation-promoting factor HMGA2 and corresponding inhibition of cell proliferation, knockdown of TRAIL-R2 increased the levels of E-Cadherin and decreased migration. In vivo, these cells were strongly impaired in their ability to form bone metastases after intracardiac injection. Evaluating possible underlying mechanisms revealed a strong downregulation of CXCR4, the receptor for the chemokine SDF-1 important for homing of cancers cells to the bone. In accordance, cell migration towards SDF-1 was significantly impaired by TRAIL-R2 knockdown. Conversely, overexpression of TRAIL-R2 upregulated CXCR4 levels and enhanced SDF-1-directed migration. We therefore postulate that inhibition of TRAIL-R2 expression could represent a promising therapeutic strategy leading to an effective impairment of breast cancer cell capability to form skeletal metastases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumorigenicity of Esophageal Cancer Stem Cells (ECSCs) in nude mouse xenograft model

Background and objectives: Modeling cancer in vivo is a very important tool to investigate cancer pathogenesis and molecular mechanisms involved in cancer progression. Laboratory mice are the most common animal used for rebuilding human cancer in vivo. Cancer stem cells (CSCs) are the main reason of failure in cancer therapy because of tumor relapse and metastasis. Isolation of cancer stem cell...

متن کامل

Enhanced metastasis suppression by targeting TRAIL receptor 2 in a murine model of triple-negative breast cancer.

PURPOSE Metastatic breast cancer is a deadly disease which requires new therapeutic strategies. Endogenous TNF-related apoptosis-inducing ligand (TRAIL) functions as a metastasis suppressor by activating proapoptotic TRAIL receptors (TRAIL-R1/DR4 and/or TRAIL-R2/DR5) in transformed cells, making it an attractive pathway for antimetastatic therapies. However, it is unclear whether TRAIL-R1 or TR...

متن کامل

Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers.

Several lines of evidence suggest that apoptosis dysregulation plays an important role in cancer metastasis. In this study, to explore the possibility that the mutations of death receptors are involved in the metastasis mechanism, we analyzed the death domains of Fas and tumor necrosis factor-related apoptosis-inducing ligand-receptor 1 and -2 (TRAIL-R1 and -R2) genes for the detection of somat...

متن کامل

Cancer Therapy: Preclinical Enhanced Metastasis Suppression by Targeting TRAIL Receptor 2 in a Murine Model of Triple-Negative Breast Cancer

Purpose: Metastatic breast cancer is a deadly disease which requires new therapeutic strategies. Endogenous TNF-related apoptosis-inducing ligand (TRAIL) functions as a metastasis suppressor by activating proapoptotic TRAIL receptors (TRAIL-R1/DR4 and/or TRAIL-R2/DR5) in transformed cells, making it an attractive pathway for antimetastatic therapies. However, it is unclear whether TRAIL-R1 or T...

متن کامل

Pharmacologic Inhibition of MLK3 Kinase Activity Blocks the In Vitro Migratory Capacity of Breast Cancer Cells but Has No Effect on Breast Cancer Brain Metastasis in a Mouse Xenograft Model

Brain metastasis of breast cancer is an important clinical problem, with few therapeutic options and a poor prognosis. Recent data have implicated mixed lineage kinase 3 (MLK3) in controlling the in vitro migratory capacity of breast cancer cells, as well as the metastasis of MDA-MB-231 breast cancer cells from the mammary fat pad to distant lymph nodes in a mouse xenograft model. We therefore ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015